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Evolution of spatially structured elastic materials using a harmonic density function
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A study is presented of the evolution of a heterogeneous material that is subjected to an increment-by-
increment persistent, deviatoric strain path. The internal evolution of the stiffness components may be effected
in various ways; some simple ones are studied here and the resulting structure formation is detected via the
spatial Fourier transform of the stiffness fluctuations.@S1063-651X~97!06010-8#

PACS number~s!: 81.05.Rm, 46.30.Cn
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I. INTRODUCTION

The mechanical response of materials as they prog
through an imposed stress or strain path generally dep
on the evolution of the internal state of the medium. T
complete description of materials should therefore inclu
information about the internal state. This is especially nec
sary for granular and other geological or biological materia
which are often heterogeneous in nature and exhibit mea
able changes in the ‘‘microstructure.’’ Oda@1,2#, for ex-
ample, has measured the angular variation of the contact
tribution of a noncohesive sand under deviatory loading
has found strong effects of both contacts being made
contacts being broken, in contact directions that coinc
with the major and minor principal stress axes, respectiv
Experiments on photoelastic assemblies in both two@3–5#
and three@6,7# dimensions on systems of disks or sphe
give information on the development of contact forces d
ing a load path. More recently, relatively reliable compu
simulations have been developed in which small assemb
are subjected to various loading conditions@8–10#, with re-
sults that can be verified against photoelastic experime
The advantage of simulated tests is obviously that data g
ering is far easier than for the physical experiments. Al
changes in microscopic properties can be effected with l
effort, which may facilitate the study of conceptual mech
nisms, insofar as they operate on a particle scale. All th
are relevant to noncohesive granular materials.

While it is completely clear that changes in microstructu
do take place, there is a lack of theoretical support that ne
urgent remedy. A number of papers deal with the behavio
small assemblies. These consist either of one particle
rounded by~stochastically described! neighboring presence
@11–13# or of two neighboring particles embedded in a me
field @14,15#. The behavior of the medium as a whole
carried out either by a traditional homogenization techniq
@12# or via a least-squares procedure in which mean-fi
properties are assigned to variables that appear in the sin
particle equilibrium equations@15,16#. All these techniques
give reasonable answers at low stress ratios for noncohe
materials@16,17# and up to quite high stress ratios for c
mented materials@18#. As such these methods have contr
uted to reduce the traditionally high number of describ
parameters required for the material description.

Nearly all geological materials exhibit rupture phenome
at some critical stress ratio. These are extremely impor
561063-651X/97/56~5!/5585~9!/$10.00
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for the predictions of catastrophic events. Landslides@19#
and planetoid breakup in the gravity field of a large planet
body @20,21# are two well-known examples. Questions ass
ciated with these events pertain mostly to the variety of r
ture phenomena as well to with the theoretical framew
that is required to make adequate predictions. The challe
is to link the micromechanical models that work over leng
scales of a couple of particles to large-scale phenom
working over a length scale that encompasses the whole
sembly.

Both experimental and theoretical studies of rupture l
ers have been published. The experimental technique re
on either x-ray or surface displacement imaging of a sam
The x-ray studies@22# show very clearly that various types o
‘‘shearbands’’ become evident under deviatoric loadin
Once the rupture takes place the material loses the abilit
support further increased deviatoric stress and therefore
onset of rupture is associated with peak stress ratio. In a
tion to shearbands at different distinct angles, a ‘‘diffus
mode of failure is sometimes observed; in this mode ther
no localized shearband, but the stress ratio attains a m
mum value@22,23#.

Theoretical studies on shearband formation have b
published and rely on a continuum description of the ma
rial ~often in the framework of a plasticity theory! @24,25#.
The drawback is that a certain constitutive behavior has to
assumed that has all the various rupture modes already
in. These methods do not explain what it is that physica
changes inside the material that causes rupture; it merely
out what constitutive assumptions are needed to cause
ture under the criterion imposed for failure to take plac
Some understanding, however, can be derived from mo
in which a microstructure near the peak stress ratio is
sumed. A well-developed example of this is the doub
shearing model, which assumes built-in directions alo
which the incremental velocity must take place. Anand@26#
has shown that the most commonly observed shearband
rections follow from this model. It is intriguing that the d
rections of the model~the maximum obliquity directions
that is, the directions along which the the macroscopic str
ratio is maximal! are only one of the three sets of directio
of shearband formation. Koenders@27# has demonstrated tha
when a similar model is extended to include higher-ord
gradients the thickness of the bands can also be obtaine

While these descriptions are useful in understanding
onset of rupture they do not explain what evolution the m
5585 © 1997 The American Physical Society
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5586 56M. A. KOENDERS
terial has experienced to get into a state where instab
may occur. It is also noteworthy that materials with an e
tirely different microstructure from noncohesive granu
materials exhibit similar qualitative stress-strain behav
and rupture layer formation~for jointed rock @28# and for
clays@29#!, suggesting that the development of these prop
ties depends more on the type of internal evolution as
material is subjected to a deviatoric stress path than on
precise microscopic interactive properties between the
damental elements that constitute the medium.

In the analysis below an analytical exploration of evo
tion of internal heterogeneity is carried out. To keep t
model analytical, simplifying assumptions obviously have
be made. While these assumptions limit the model to
most primitive of materials, the analysis demonstrates v
clearly that structure formation takes place when the mate
is subjected to a persistent deviatoric strain path. The t
‘‘structure’’ is here meant as a directional dependence of
two-point correlation function of the components of t
position-dependent stiffness. Not only does structure a
quite naturally, the theory reveals very clearly how localiz
phenomena may arise. By particularly studying two types
evolution rules, those that depend on either the local volu
strain or the local deviator invariant, it is demonstrated t
the manner in which structure is created depends directly
the sort of rule that is deployed.

It turns out that a transparent picture of the two-po
correlation function of the stiffness is achieved by using
Fourier transform, the harmonic density. At the same ti
the wave vector that is involved in this representation give
measure of when the internal state of the material is such
the finite dimension of the constituents becomes relevan
line with other theories the constituents themselves are
lieved to be much stiffer than the assembly of which they
elements, the main cause of deformation being the rela
motion between the particles due either to sliding or to sp
ning.

II. THEORETICAL PRINCIPLES

A medium is characterized by its position-dependent st
nessA~x!, connecting a stress increments~x! to a strain in-
cremente~x! in geometrical linearization, implying that th
displacement incrementu is much smaller than the lengt
scale of a mesodomain@30# D:

si j ~x!5Ai jkl ~x!ekl~x!5
1

2
Ai jkl ~x!S ]uk

]xl
1

]ul

]xk
D . ~1!

The stiffness is defined over the length scaleD, the typical
dimension of a small assembly, in such a way that it portr
the average motion between the grains that constitute
material. The representation of the medium is here as ’’po
functions’’; the alternative representation as ’’set function
is developed by Axelrad@30#, Sec. 3.5. In this reference als
relevant probability space measures are discussed. On
scale of the mesodomain the stress cannot be expecte
represent the force between the grains in its entirety. The
a correction, not necessarily small, that describes the er
part of the force that is left after the local homogenizati
that yields the small-scale stress measure; this part of
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force is represented by its volume density and is cal
fD(x). The variation in the stiffness is crucial and needs to
characterized in some way. This is done here by specify
the harmonic density. It will be demonstrated that this is
very natural measure that fits in directly with the method
ogy for the quasistatic equilibrium equations. These are

]si j

]xj
1~ f D! i50,

]

]xj
FAi jkl ~x!S ]uk

]xl
1

]ul

]xk
D G522~ f D! i . ~2!

The moduli change as the motion goes on, but the motio
assumed to be so slow that at any point quasistatic equ
rium may be used. For a first-order solution Kro¨ner @31# is
followed, where the solution is expressed as a sum ofn-point
correlation functions. In lowest order the two-point corre
tion function is sufficient, which is obtained by neglectin
the possible correlation between first-order fluctuations. T
latter are defined as the deviation from the volume avera
of the various significant variables

Āi jkl 5
1

V E
V
dV Ai jkl ~x!, Bi jkl ~x!5Ai jkl ~x!2Āi jkl ;

~3!

akl5
1

V E
V
dV

]uk

]xl
~x!,

]vk

]xl
~x!5

]uk

]xl
~x!2akl . ~4!

When this decomposition of the stiffness tensor and the
formation is substituted into the equilibrium equations
ordering on the basis of products of fluctuating terms
found:

]Bi jkl ~x!

]xj
~akl1a lk!1Āi jkl S ]2vk

]xl]xj
1

]2v l

]xk]xj
D

1
]

]xj
FBi jkl ~x!S ]vk

]xl
1

]v l

]xk
D G522~ f D! i . ~5!

A solution hierachy was put forward by Kro¨ner@31#: Neglect
first the last term and solve the ensuing linear equation; t
substitute back and solve for the first-order fluctuations a
so on. Here the first-order fluctuations are retained only
the solution is expressed as a Fourier transform inn dimen-
sions (n52,3)

Bi jkl ~x!5
1

~2p!n E dnk B̂i jkl ~k!eikmxm,

vk~x!5
1

~2p!n E dnk v̂k~k!eikmxm. ~6!

Thus

ik j B̂i jkl ~akl1a lk!12~ f̂ D! i2Āi jkl ~kjkl v̂k1kjkkv̂ l !'0.
~7!

This equation is valid for each value ofk; the analysis below
is particularly aimed at investigating the range of smallk,
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whereas the harmonic content off̂D is nonzero in the range
ukuD.1. For the moment this term is then neglected, but
issue will be taken up again in Sec. IV.

The symmetry in the indices of bothĀ and B̂
(Āi jkl 5Āj ikl 5Āi j lk , and similarly for B̂! ensures that one
may write

ik j B̂i jkl akl2Āi jkl kjkl v̂k50. ~8!

The acoustic tensor is defined as

P̂ik5Āi jkl kjkl ~9!

and therefore

v̂a5 i P̂ab
21kj B̂b jklakl . ~10!

From this first-order approximation the following releva
parameters can be derived. The Fourier transform of the fl
tuation of the distortion is

ikcv̂a52 P̂ab
21kjkcB̂b jklakl52Ĥacb jB̂b jklakl . ~11!

The homogenized stress increment is

s̄pq5Āpqklakl1
1

2V E
V
dV Bpqkl~x!S ]vk

]xl
~x!1

]v l

]xk
~x! D .

~12!

The second term is conveniently reevaluated by making
of the development

1

V E
V
dV Bpqkl~x!

]vk

]xl
~x!

5
i

V~2p!2n E
V
dVE dnkE dnh B̂pqkl~k!

3eikmxm1 ihmxmh l v̂k~h!

5
1

V~2p!n E dnk B̂pqkl~k!E dnh ih l v̂k~h!dn~h1k!

52
1

V~2p!n E dnk B̂pqac~2k!Ĥacb j~k!B̂b jkl~k!akl .

~13!

This expression is now interpreted with the aid of a harmo
density rather than~as does Kro¨ner @31#! express it as a cor
relation function. The following definitions of correlatio
function and harmonic density are used. The autocorrela
function Fy(t) of a functiony(t) is

Fy~t!5 lim
T→`

1

T E
0

T

dt y~ t !y~ t1t!. ~14!

It follows that F(2t)5F(t). A truncated Fourier trans
form is defined asFT5*0

Tdt y(t)e2 ikt; using this the har-
monic density ofy(t) is now defined as

Sy~k!5
2

T
FT~k!FT* ~k!. ~15!
e

c-

se

c

n

The connection with the correlation function is given by t
familiar Wiener-Khinchin theorem

E
0

T

dt F~t!e2 ikt5
1

T
FT~2k!FT~k!5

1

T
FT* ~k!FT~k!.

~16!

Cross correlations may be defined analogously. The c
correlation function is

Fxy~t!5 lim
T→`

E
0

T

dt x~ t !y~ t1t! ~17!

and the cross harmonic density is

Sxy~k!52E
2`

`

dt Fxy~t!eikt5
2

T
~FT!x~k!~FT!y* ~k!.

~18!

This has the propertySxy(k)5Syx* (k)5Syx(2k).
Using these formulas, extended ton dimensions, to evalu-

ate formula~13!, it is seen that the first-order correction o
the stress is a filtered cross harmonic density

2akl

2V~2p!n E dnk B̂pqac~2k!@Ĥacb j~k!1Ĥcab j~k!#B̂b jkl~k!

52
akl

4~2p!n E dnk SBb jkl ,Bpqac
~k!

3@Ĥacb j~k!1Ĥcab j~k!#. ~19!

Kröner @31# does the same calculation but expresses the
rection in terms of the cross correlation function. He a
discusses higher-order terms and applies these to a perf
random material. In this way he achieves an estimate for
effective stiffness of the medium, an estimate somewh
between the Reuss and Voight estimates. While the estim
of the overall stiffness is not irrelevant for the purposes
this paper, the central question here is the evolution of
internal structure of the medium. It is therefore required t
evolution rules are phrased. The criterion for these is t
they must be sufficiently simple for the theory to retain
analytical form. The effect of the evolution rules is studi
under persistent strain paths.

The study is most straightforwardly carried out if the m
dium is composed of a material with few parameters. T
simplest, nontrivial material is an isotropic medium that h
two parameters, for whichA~x! has the form

Ai jkl ~x!5l~x!d i j dkl1m~x!~d ikd j l 1d i l dk j!. ~20!

The spatial distributions ofl~x! and m~x! then completely
define the first-order stiffness correction given by formu
~13!. The material may consist of isotropic mesodomains a
the overall moduli may exhibit anisotropy due to an anis
tropic distribution ofl~x! andm~x!.

For an average isotropic medium the stiffnessesĀ take
the form

Āi jkl 5l̄d i j dkl1m̄~d ikd j l 1d i l dk j!. ~21!

It is easily verified that the following relations hold:
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P̂ik5~ l̄1m̄ !kikk1m̄k2d ik , ~22!

Ĥacb j5S 2~ l̄1m̄ !kakb

m̄~ l̄12m̄ !k4
1

dab

m̄k2D kjkc . ~23!

Let the fluctuations be generated by another isotropic ten

Bi jkl ~x!5n~x!d i j dkl1r~x!~d ikd j l 1d i l dk j! ~24!

and so

i v̂akc52 n̂akk

kakc

~ l̄12m̄ !k2

22r̂aklkck1

2~ l̄1m̄ !kakk1dakk
2~ l̄12m̄ !

m̄~ l̄12m̄ !k4
.

~25!

The evolution in the internal parameters is phrased a
microstrain-dependent ‘‘law’’. The strain increment at loc
tion x, e~x!, is the average straina plus a fluctuationb~x!;
the Fourier transform of the latter isb̂ab5 ( i /2) (v̂akb
1 v̂bka). As isotropy has been imposed, the coefficients t
appear in the evolution rule can only depend on the lo
invariants. These are the isotropic strain increm
eaa(x)5aaa1baa(x) and the first nonzero invariant of th
deviatoric strain increment (1/2)eab8 (x)eba8 (x), where the de-
viatoric strain increment is defined aseab8 (x)5eab(x)
2 (1/n) ekk(x)dab . The third invariant exists only in the
three-dimensional case and may be introduced if require

Changes associated with isotropic and deviatoric st
increments are of key relevance to the geological mater
mentioned in the Introduction. The change due to the iso
pic strain increment can be related to the mechanism of lo
contact deletion or contact making. The physical interact
takes place at contacts; the mechanical contact law may n
rally depend on local conditions, but the number of inter
tive points in a small volume is certainly important. Expe
mental findings as well as modeling have been reporte
bear out these facts. Yanagisawa@32# draws together result
from the theoretical study of various regular and rand
packings and experiments on glass beads and sand, de
strating a systematic connection between the shear mod
the coordination number, and the voids ratio. Brotzme
and Abouaf@33# similarly show the relation between the a
plied pressure, the voids ratio, and the coordination num
for a numerical simulation of a ceramic powder compact
~acknowledging the heterogeneous character of the probl!.
The effects of the deviatoric strain are reported by Cund
et al. @34#, who with a numerical simulation of a dense
packed assembly of disks with elastofrictional interact
properties show that the local deletion of contacts is acc
panied by a local slip and thus a concomitant reduction in
stiffness parameters. Both the isotropic and deviatoric st
increments influence the stress ratio in a mesodomain
where the contact law has a frictional character the stiffn
coefficients of the mesodomain will be influenced by the
two invariants.

With these considerations in mind, the following evol
tion rules are put forward:
or
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l̊~x!dt5cI
~l!eaa~x!1cD

~l!A1

2
eab8 ~x!eba8 ~x!, ~26!

m̊~x!dt5cI
~m!eaa~x!1cD

~m!A1

2
eab8 ~x!eba8 ~x!. ~27!

The coefficientscI ,D
(l,m) can be functions of local state var

ables: components of the local stress, invariants of the lo
stress, the mass density, or even independent variables
change with the local strain~local contact point distribution,
for example!. None of these are considered here; t
material-dependent coefficientscI ,D

(l,m) will be assumed to be
constants throughout the persistent strain path. The effec
evolution for the material properties as a whole and patt
of microstructure that evolves are studied as the materia
subjected to a succession of strain increments.

III. EXAMPLES OF DIFFERENT CASES
OF EVOLUTION RULE

Two examples of evolution rule are studied in some d
tail. The two cases are extremes, but demonstrate that
medium under persistent straining can become highly st
tured and that the type of structure that materializes depe
crucially on the type of evolution rule that is deployed.

A. Isotropic rule

For this casecD
(l,m)50. The evolution rule takes the form

dl~x!5cI
~l!eaa~x!5cI

~l!@aaa1baa~x!#, ~28!

dm~x!5cI
~m!eaa~x!5cI

~m!@aaa1baa~x!#. ~29!

Distinguishing averages and fluctuations gives

dl̄5cI
~l!aaa , dn~x!5cI

~l!baa~x!; ~30!

dm̄5cI
~m!aaa , dr~x!5cI

~m!baa~x!. ~31!

Time is mesaured as a fraction ofa11: a115a0dt. Let the
intial state be isotropic. A persistent strain path is defined
a225m2a0dt, a335m3a0dt with constant coefficientsm.
Thusaaa5a0(11m21m3)dt5åaadt. The four differential
equations~30! and ~31! have a solution in the Fourier do
main. The averages satisfy

l̄~ t !5l̄~0!1cI
~l!a0~11m21m3!t, ~32!

m̄~ t !5m̄~0!1cI
~m!a0~11m21m3!t. ~33!

For the solution of the fluctuating parts of the stiffness fie
the quantity b̂aa(k) is obtained from Eq. ~25!:
b̂aa(k)52@ n̂(k)akk22r̂(k)aklkkkl #/@(l̄12m̄)(t)#. The
equations for the fluctuating parts of the stiffnesses are s
to represent a linear system of two differential equations. T
solution has the form

n̂~ t !5 n̂~0!1M ~eh~w!t~ t !21!,
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r̂~ t !5 r̂~0!1
cI

~m!

cI
~l! M ~eh~w!t~ t !21!, ~34!

where

h~w!52cI
~l!åaa22cI

~m!
k1

21m2k2
21m3k3

2

k2 a0 ,

t~ t !5

lnS ~ l̄12m̄ !~ t !

~ l̄12m̄ !~0!
D

~cI
~l!12cI

~m!!åaa

,

M5
cI

~l!n̂~0!åaa12cI
~l!r̂~0!~k1

21m2k2
21m3k3

2!a0 /k2

cI
~l!åaa12cI

~m!~k1
21m2k2

21m3k3
2!a0 /k2 .

~35!

For the interpretation below on structure formation it is co
venient to write the exponential part of the solution in t
form

eh~k!t~ t !5H ~ l̄12m̄ !~ t !

~ l̄12m̄ !~0!
J 2p

5H ~cI
~l!12cI

~m!!åaat

~ l̄12m̄ !~0!
11J 2p

with

p5

cI
~l!1

2cI
~m!~k1

21m2k2
21m3k3

2!

k2~11m21m3!

cI
~l!12cI

~m! . ~36!

The isotropic distribution of the fluctuations of the stiffne
parameters retains its shape in space~and only changes in
magnitude! when the deformation is isotropic~m251 and
m351!. But the shape becomes distorted if a deviatoric co
ponent is present in the average strain. The latter case is
easily studied in two dimensions, so setm350.

The salient features are captured by the parame
f 5cI

(m)/cI
(l) andm2 . The dependence onk of Eq. ~36! is as

a function of the angle in thek-plane only. Therefore, for
strain paths in which (cI

(l)12cI
(m))(11m2)a0t is positive,

that is, when (m211)(2 f 11).0, the harmonic density o
n̂ will inflate in the direction for which the exponent of Eq
~36! is positive. When the value of (l̄12m̄)(t) decreases
with time, or (m211)(2 f 11),0, the same will happen fo
directions for which the exponent is negative. Expressedf
and m2 , the exponent has the form2@(m21112 f )k1

2

-

-
ost

rs

1(m21112 f m2)k2
2#/(m211)(2 f 11)k2. If this theory is

pushed to the point where (l̄12m̄)(t) vanishes there will be
problems with diverging integrals when doing the perturb
tion calculus. Much more subtle evolution rules are then
quired. However, the tendency for the harmonic density
concentrate in certain directions will occur.

As the exponent depends homogeneously onk1
2 andk2

2 the
directions in which an extreme concentration of harmo
density may occur after persistent straining is either the m
jor or the minor principal strain direction. Reckoning com
pressive strain positive, as is usual in soil mechanics,
ranges off andm2 for which the polar angle in thek plane
is the extreme concentration direction are as follo
@f5arctan(k2 /k1)# f50 andf5p are obtained when ei
ther

~m211!~2 f 11!.0, f , f m2

or

~m211!~2 f 11!,0, f . f m2 ; ~37a!

f5 p/2 andf5 3p/2 are obtained when either

~m211!~2 f 11!.0, f . f m2

or

~m211!~2 f 11!,0, f . f m2 . ~37b!

B. Deviatoric rule

For this casecI
(l,m)50. The evolution rule is nonlinear

Eqs.~26! and ~27! take the form

dl~x!5cD
~l!A1

2
eab8 ~x!eba8 ~x!, ~38!

dm~x!5cD
~m!A1

2
eab8 ~x!eba8 ~x!. ~39!

The perturbation theory produces results with an accurac
the order (n̂/m̂,r̂/m̂), or equivalentlyubu/uau. The nonlinear
terms of Eqs.~38! and ~39! are therefore inaccurate and
linear approximation is appropriate. As before, a coordin
system is chosen in whicha takes the diagonal form. De
pending on the dimension of the problem, the following
obtained:
A1

2
eab8 ~x!eba8 ~x!'

1

2
@ ua112a22u1~b112b22!sgn~a112a22!#, n52. ~40a!

For n53 define

g5Aa11
2 1a22

2 1a33
2 2a22a332a11a222a11a33;

then
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A1

2
eab8 ~x!eba8 ~x!'

g

)
1

1

2)

b11~2a112a222a33!

g
1

1

2)

b22~2a1112a222a33!1b33~2a112a2212a33!

g
. ~40b!
d
in

pi
ed
th
n

or
le

g
ak

a-
d

les

ays
red
mbi-

n

These formulas are obviously ill defined for isotropic loa
ing. Averages and fluctuations can be distinguished, lead
to differential equations similar to the case of the isotro
evolution rule. A two-dimensional specialization is pursu
here to acquire insight into the physical properties of
solutions for persistent loading. The following four equatio
are obtained:

dl̄5
1

2
cD

~l!ua112a22u,

dm̄5
1

2
cD

~m!ua112a22u, ~41!

dn~x!5
1

2
cD

~l!@b11~x!2b22~x!#sgn~a112a22!,

dr~x!5
1

2
cD

~m!@b11~x!2b22~x!#sgn~a112a22!, ~42!

where

b̂112b̂225~a111a22!
~ r̂2 n̂ !~k2

42k1
4!

~ l̄12m̄ !k4
2~a112a22!

3
r̂@4l̄k1

2k2
21m̄~k1

416k1
2k2

21k2
4!#

m̄~ l̄12m̄ !k4
. ~43!

Using once more the shorthanda115a0dt, a225ma0dt and
assuming that the intial state is isotropic, Eqs.~41! and ~42!
have solutions. These are rather more complicated in f
than the equivalent solution for the isotropic evolution ru
The averages are straightforward:

l̄~ t !5l̄~0!1
1

2
cD

~l!a0u12mut, ~44!

m̄~ t !5m̄~0!1
1

2
cD

~m!a0u12mut. ~45!

The solution for the fluctuations is found in the followin
manner. The evolution equations in the Fourier domain t
the form

dn̂~k!

dt
5

1

2
cD

~l!@An~k,t !n̂~k!1Ar~k,t !r̂~k!#a0s, ~46!

dr̂~k!

dt
5

1

2
cD

~m!@An~k,t !n̂~k!1Ar~k,t !r̂~k!#a0s, ~47!

wheres5sgn(m21). The solution has the form

n̂~ t !5 n̂~0!1eh~ t,k!E
0

t

G~t,k!e2h~t,k!dt, ~48!
-
g

c

e
s

m
.

e

r̂~ t !5 r̂~0!1
cD

~m!

cD
~l! eh~ t,k!E

0

t

G~t,w!e2h~t,k!dt, ~49!

with

G~t,k!5
1

2
cD

~l!a0s@An~t,k!n̂~0!1Ar~t,k!r̂~0!#,

~50!

dh~t,k!

dt
5

1

2
cD

~l!a0sS An~t,k!1
cD

~m!

cD
~l! Ar~t,k! D . ~51!

While the solution for the Fourier transform of the fluctu
tions is given implicitly, the structure formation is dictate
by the asymptotic behaviort→`. The leading term is obvi-
ously the termeh(t,k) in Eqs.~48! and~49! and therefore Eq.
~51! is investigated in the limit of larget. The behavior of
h(t,k) in this limit is read from the structure ofAn(t,k) and
Ar(t,k): Eq. ~48!. Introducing the ratiog5cD

(m)/cD
(l) , it is

found that

dh~t,k!

dt
;

1

t
u~k!, ~52!

with

u~k!52
a0k1

4~2g2m21!

k4~2g11!~m21!
1

2a0k1
2k2

2~3g12!

k4~2g11!

1
a0k2

4~2gm2m21!

k4~2g11!~m21!
. ~53!

Angles corresponding to maxima for positiveu(k) represent
a concentration of the harmonic density, as well as ang
corresponding to minima for negativeu(k). While for the
case of the isotropic rule the angle of concentration alw
coincided with the coordinate axes, for the case conside
here other angles are also possible, depending on the co
nation ofg andm. These angles satisfy

cosf56
Ag~m23!13m21

2Ag11Am21
. ~54!

These angles are possible when

U ~g21!~m11!

~m21!~2g11!
U<1, ~54a!

while the sign of

S5g2~9m2214m19!14g~m224m11!12~m211!

~54b!

determines whetheru(k) is positive or negative and the sig
of the second derivative
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S25@g~m23!12m#@22g~3m21!# ~54c!

indicates a maximum whenS2,0 or a minimum ifS2.0.
When for any givenm and g these angles become th

directions of concentration of harmonic density, the medi
is dominated by an intrinsic microstructure with preferent
directions according to Eq.~54!. This is a typical result of an
evolution rule that depends on the local deviatoric stra
Other concentration directions may appear simultaneo
and coincide with one of the coordinate axes. This comple
the study of the two extreme cases of evolution rule.

IV. EFFECTS DUE TO THE FINITE CONSTITUENT SIZE

The analysis in Sec. II relies on the fact that a local st
ness can be defined. For a material consisting of finite c
stituents the local stiffness is derived by characterizing
small assembly of particles. Thus the stiffness is defined o
a length scale of the order of the small assembly sizeD.
Wave vectors with a magnitude greater thanD21 have no
meaning for the problem. But there is an effect due to
residue forcefD , which adds a contribution to the overa
stiffness. This contribution is obtained in a way similar to t
manner in which Eq.~13! was found and is equal to

2
1

4~2p!n E dnk P̂kb~k!

3@S]Bpqkl /]xl ,~ f D!b
~k!1S]Bpqlk/]xl ,~ f D!b

~k!#.

The correlation between the gradient inB and fD manifests
itself on the scale ofD21 in the wave-vector space. Th
presence ofP̂, however, damps the influence of the corre
tion as this quantity declines rapidly with increasinguku.

As the harmonic density changes due to persistent~mostly
deviatoric! loading, the typical dominant wave number al
changes. The order of magnitude of the maximum wa
number corresponds to a sphere ink space with radiusD21.
The whole problem must be constrained to remain wit
this sphere and when the dominant wave number approa
the permissible outer region certain measures must be ta

A suitable measure for the magnitude of a componen
the dominant wave number is derived from interpreting
harmonic density as a probability density function

^k1
2&5

E d2k k1
2n̂~k!n̂* ~k!

E d2k n̂~k!n̂* ~k!

. ~55!

The value changes with time as persistent deviatoric load
takes place.

By way of example, the case of the isotropic evoluti
rule is considered. To ensure an analytical result, which
desirable for transparency, a special assumption is mad
make the parameterM in Eq. ~34! independent of the wave
number. This assumption is thatcI

(m)n̂(0)5cI
(l)r̂(0); then

the harmonic density has the form

@ n̂~k!n̂* ~k!#~ t !5@ n̂~k!n̂* ~k!#~0!q~ t !a1b cos2~f!1c sin2~f!,
~56!
l

.
ly
s

-
n-
a
er

e

-

e

n
es

en.
f

e

g

is
to

whereq(0)51. Assuming an initial isotropic harmonic den
sity, expression~55! is expressed in the modified Bess
functionsI 0 and I 1 @35#:

^k1
2&~ t !5

E dk k3@ n̂~k!n̂* ~k!#~0!

E dk k@ n̂~k!n̂* ~k!#~0!

3S I 1S 1

2
~b2c!ln@q~ t !# D

2I 0S 1

2
~b2c!ln@q~ t !# D D S 1

2
ln@q~ t !#11D .

~57!

It follows from the properties of the modified Bessel fun
tions that if the 1 direction is the direction in which th
harmonic density concentrates,^k1

2& always increases with
time. Therefore, there must come a point when contributi
close to the sphere ink space with radiusD21 become im-
portant. More generally, when structure formation tak
place an interaction between effects on the macroscale
those on a microscale is inevitable. Naturally, if the assum
tion cI

(m)n̂(0)5cI
(l)r̂(0) is not made the result will be simi

lar, but it is not so easily expressed in analytical form.
The above is a powerful argument in favor of the study

small assemblies under intense straining conditions as
as an initial and tentative guide to the possible form a
correction might have. The fact that the problem has
spherical character implies that any correction terms in
constitutive relations must be of an even power ink, the
simplest one being quadratic. This points to a second-o
gradient correction term in the stress-strain relationship
stress increments calculated by conventional means, Eq.~1!,
needs to be corrected by a term proportional
]2smn /]xp]xqD2. In k space this type of term will not be
noticed, whilek2D2!1, in which case the theory reverts t
the classical form. The correction term detects when
magnitude of the wave number approachesD21.

It is reasonable to assume that the correction term is s
sitive to the directions in which the harmonic density co
centrates. Calling the unit vectors of these directionsN, with
a superscript to distinguish between them if there is m
than one, and employing a set of geometrical tensorsQ( i ), a
plausible corrective term may have the form

si j8 5
]2smn

]xr]xs
D2(

~p!
Qi jmn

~p! Nr
~p!Ns

~p! . ~58!

This needs to be expressed in the displacement field.
avoid problems with objectivity~see@36#! primary variables
are used, that is, the distortion and the spin tensor

smn5XmnklS ]uk

]xl
2kklD , ~59!

Xmnkl1Xmnlk52Amnkl . ~60!

The total stress increment is
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si j 1si j8 5Xi jkl S ]uk

]xl
2kklD1

]2smn

]xr]xs
D2(

~p!
Qi jmn

~p! Nr
~p!Ns

~p!

5Xi jkl S ]uk

]xl
2kklD1D2(

~p!
Qi jmn

~p! Nr
~p!Ns

~p!

3
]2

]xr]xs
FXmnklS ]uk

]xl
2kklD G . ~61!

X is defined to work on a scale greater thanD and therefore
the corrective term contains contributions of higher-ord
displacement and spin gradients only. The spin is sol
from the requirement that the total stress increment is s
metric.

The form for the correction suggested here may not be
most general or even the most appropriate one, but on
basis of more specific studies@27# there is little doubt that it
should contain higher-order gradients and gradients of s
tensors. Alternatively, the corrective term may be viewed
a more precise description of the forces between the part
than is achieved by an ‘‘ordinary’’ stress. The term th
approximates the short-range force residuefD , giving a more
precise description of interconstituent forces.

V. INDUCED ANISOTROPY

Persistent deviatoric loading of an initially isotrop
sample will lead to overall anistropic properties, even thou
the constituents themselves are isotropic. The anisotrop
induced by the deviatoric character of the succession
strain increments as the fluctuation intensity of the para
eters that make up the stiffness are ordered in a spe
direction ink space. The most accessible parameter, illus
tive of the anisotropy induction, is the difference in the 11
and 2222 components of the overall stiffness. Equation~19!
is evaluated for this purpose:

2
1

4

1

~2p!n E dnk@SBb j11 ,B11ac
~k!2SBb j22 ,B22ac

~k!#

3@Ĥacb j~k!1Ĥcab j~k!#

52
1

~ l̄12m̄ !t

1

~2p!2 E
0

`

dkE
0

2p

dfk cos~2f!

3@ n̂~2k!r̂~k!1 n̂~k!r̂~2k!12r̂~k!r̂~2k!#~ t !.

~62!

Clearly, while the distribution of the fluctuations is isotrop
Eq. ~62! vanishes, but as the distribution builds up in certa
directions, as explained in Sec. III, the angular integral
Eq. ~62! becomes nonvanishing and anisotropy is induce

The anisotropy so obtained is entirely due to the spa
ordering of the material under the influence of the evolut
rules. Another type of anisotropy may also occur, but it h
been neglected here. This type is inherent anisotropy, w
may become manifest as the constituents themselves a
anistropy due to changing local state variables. For exam
if the material consists of an assembly of grains with
elastofrictional interaction contacts are lost and broken w
the material is strained through a deviatoric path. The c
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stituents of the material are small subassemblies, each
sisting of a handful of grains; these subassemblies th
selves become anisotropic when contacts concentrate
particular direction. The calculus presented here can
amended to allow for such effects, but it is unlikely that th
can be done under a purely analytical scheme; numer
approaches will have to be devised to estimate these
nomena.

VI. DISCUSSSION AND CONCLUSIONS

The approximation that has been made throughout is
on the basis of the first-order approximation of the str
field, sufficient information is available to estimate the exte
of the local evolution of the material properties. This c
obviously be refined. For persistent strain paths and cons
evolution rules it is then found that structure formation a
induced anisotropy become manifest, even though the c
stituents themselves are perfectly isotropic; the structure
mation appears as a result of spatial distrubution of stiffn
and not necessarily due to intrinsic anisotropy on a m
crolevel.

For extreme structure formation it is clear that an exte
sion of the stress strain theory is required to stop the de
mation taking place on the scale of the~rigid! constituents of
the medium. In principle, the inhibition can also be phras
in terms of the evolution rules themselves, but whiche
way is chosen a clear need has been identified for the in
tigation of small assemblies of grains in severe straining

To compare the results reported here with other wo
two papers are mentioned: those of Williams and Rege@37#
and Cundall@38#. These are both numerical papers, thus
methodology for solving the properties of the heterogene
medium is entirely different from the one described abo
Both papers describe the fate of a heterogeneous med
under persistent straining, with evolution rules that are si
lar ~if not identical! to the deviatoric rule deployed here
Both papers find that coherent structures appear at high
viatoric strain, similar to the ones that are predicted by m
theoretical means in the present paper, that is, structure
certain preferred angles. While a direct comparison with
present theory is difficult to carry out, the effect of spat
distribution in structures is clearly, though qualitatively, va
dated.

A more quantitave validation could be carried out if
numerical simulation of an assembly of particles is run an
Fourier transform of a local stiffness measure is carried o
If the interparticle force displacement is given by the ten
K and the center-to-center vector between neighbor
grains is calledc, then a simple measure for the stiffne
Apqrs representing one particle withN contacts is propor-
tional to a symmetrized form of(n51

N Kpr
(n)cq

(n)cs
(n) .

The cross harmonic density of this quantity can be de
mined. Suppose that structure formation takes place o
linear scale of some ten particles. To evaluate the harmo
content with an accuracy of, say, 10%, 100 adjacent spa
frequency points need to be averaged~assuming that the har
monic content does not change markedly in the vicinity
the point; see@39#!, requiring a linear dimension of som
1000 particles. For a three-dimensional simulation some9

particles are needed and for a two-dimensional one so
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thing on the order of 106 particles are needed. These num
bers are in line with experiments on laboratory-prepa
samples of soil; Arthur@40# has shown in an experimen
using an x-ray grain displacement measurement techn
@41# that reproducibility in the standard deviation of the d
placement is achieved for samples consisting of some8

particles. This number is stress-ratio dependent though;
number quoted pertains to a value of two-thirds of the str
ratio at failure~dense sample of Leighton-Buzzard sand!. For
lower stress ratios it is smaller: greater than 104 for the stress
ratio at roughly half the failure value.

The numerical tests in two dimensions by Williams a
-
an
.

oli

7

d
.

-
d

ue

0
he
s

Rege@37# contain maximally 2000 particles in two dimen
sions and while a structure formation of some sort is o
served, it is difficult to make conclusive statistical stateme
about it. The two-dimensional sample size that is neede
just within the reach of current simulation practice.
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