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Evolution of spatially structured elastic materials using a harmonic density function
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A study is presented of the evolution of a heterogeneous material that is subjected to an increment-by-
increment persistent, deviatoric strain path. The internal evolution of the stiffness components may be effected
in various ways; some simple ones are studied here and the resulting structure formation is detected via the
spatial Fourier transform of the stiffness fluctuatiof&1063-651X97)06010-§

PACS numbd(s): 81.05.Rm, 46.30.Cn

I. INTRODUCTION for the predictions of catastrophic events. Landslifi&g]
and planetoid breakup in the gravity field of a large planetary
The mechanical response of materials as they progredsdy[20,21] are two well-known examples. Questions asso-
through an imposed stress or strain path generally dependsated with these events pertain mostly to the variety of rup-
on the evolution of the internal state of the medium. Theture phenomena as well to with the theoretical framework
complete description of materials should therefore includehat is required to make adequate predictions. The challenge
information about the internal state. This is especially necess to link the micromechanical models that work over length
sary for granular and other geological or biological materialsscales of a couple of particles to large-scale phenomena
which are often heterogeneous in nature and exhibit measuworking over a length scale that encompasses the whole as-
able changes in the “microstructure.” Odd,2], for ex-  sembly.
ample, has measured the angular variation of the contact dis- Both experimental and theoretical studies of rupture lay-
tribution of a noncohesive sand under deviatory loading an@rs have been published. The experimental technique relies
has found strong effects of both contacts being made andn either x-ray or surface displacement imaging of a sample.
contacts being broken, in contact directions that coincidelhe x-ray studie§22] show very clearly that various types of
with the major and minor principal stress axes, respectively.'shearbands” become evident under deviatoric loading.
Experiments on photoelastic assemblies in both [&e5]  Once the rupture takes place the material loses the ability to
and thre€[6,7] dimensions on systems of disks or spheressupport further increased deviatoric stress and therefore the
give information on the development of contact forces dur-onset of rupture is associated with peak stress ratio. In addi-
ing a load path. More recently, relatively reliable computertion to shearbands at different distinct angles, a “diffuse”
simulations have been developed in which small assembliesiode of failure is sometimes observed; in this mode there is
are subjected to various loading conditid®s-10], with re-  no localized shearband, but the stress ratio attains a maxi-
sults that can be verified against photoelastic experimentsnum value[22,23.
The advantage of simulated tests is obviously that data gath- Theoretical studies on shearband formation have been
ering is far easier than for the physical experiments. Alsopublished and rely on a continuum description of the mate-
changes in microscopic properties can be effected with littleial (often in the framework of a plasticity thegry24,25.
effort, which may facilitate the study of conceptual mecha-The drawback is that a certain constitutive behavior has to be
nisms, insofar as they operate on a particle scale. All thesassumed that has all the various rupture modes already built
are relevant to noncohesive granular materials. in. These methods do not explain what it is that physically
While it is completely clear that changes in microstructurechanges inside the material that causes rupture; it merely sets
do take place, there is a lack of theoretical support that needsut what constitutive assumptions are needed to cause rup-
urgent remedy. A number of papers deal with the behavior ofure under the criterion imposed for failure to take place.
small assemblies. These consist either of one particle suSome understanding, however, can be derived from models
rounded by(stochastically describedieighboring presences in which a microstructure near the peak stress ratio is as-
[11-13 or of two neighboring particles embedded in a meansumed. A well-developed example of this is the double
field [14,15. The behavior of the medium as a whole is shearing model, which assumes built-in directions along
carried out either by a traditional homogenization techniquavhich the incremental velocity must take place. An{a]
[12] or via a least-squares procedure in which mean-fielthas shown that the most commonly observed shearband di-
properties are assigned to variables that appear in the singlesctions follow from this model. It is intriguing that the di-
particle equilibrium equationgl5,16. All these techniques rections of the modelthe maximum obliquity directions,
give reasonable answers at low stress ratios for noncohesitbat is, the directions along which the the macroscopic stress
materials[16,17 and up to quite high stress ratios for ce- ratio is maximal are only one of the three sets of directions
mented materialgl8]. As such these methods have contrib- of shearband formation. Koendg¢&7] has demonstrated that
uted to reduce the traditionally high number of describingwhen a similar model is extended to include higher-order
parameters required for the material description. gradients the thickness of the bands can also be obtained.
Nearly all geological materials exhibit rupture phenomena While these descriptions are useful in understanding the
at some critical stress ratio. These are extremely importartnset of rupture they do not explain what evolution the ma-
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terial has experienced to get into a state where instabilityorce is represented by its volume density and is called
may occur. It is also noteworthy that materials with an en-f5(x). The variation in the stiffness is crucial and needs to be
tirely different microstructure from noncohesive granularcharacterized in some way. This is done here by specifying
materials exhibit similar qualitative stress-strain behaviorthe harmonic density. It will be demonstrated that this is a
and rupture layer formatioffor jointed rock[28] and for  very natural measure that fits in directly with the methodol-
clays[29]), suggesting that the development of these properegy for the quasistatic equilibrium equations. These are
ties depends more on the type of internal evolution as the

material is subjected to a deviatoric stress path than on the JS;j

precise microscopic interactive properties between the fun- (9_xj+(fD)i_0’
damental elements that constitute the medium.
In the analysis below an analytical exploration of evolu- au,  duy,
tion of internal heterogeneity is carried out. To keep the ax; Aijkl(x)<a_xl+ a_xk) =—=2(fp)i- (2

model analytical, simplifying assumptions obviously have to

be made. While these assumptions limit the model to therhe moduli change as the motion goes on, but the motion is
most primitive of materials, the analysis demonstrates vergssumed to be so slow that at any point quasistatic equilib-
clearly that structure formation takes place when the materiglym may be used. For a first-order solution Kes[31] is

is subjected to a persistent deviatoric strain path. The termpllowed, where the solution is expressed as a sum-pbint
“structure” is here meant as a directional dependence of theorrelation functions. In lowest order the two-point correla-
two-point correlation function of the components of thetjon function is sufficient, which is obtained by neglecting
position-dependent stiffness. Not only does structure arisghe possible correlation between first-order fluctuations. The
quite naturally, the theory reveals very clearly how localizedjatter are defined as the deviation from the volume averages

phenomena may arise. By particularly studying two types obf the various significant variables
evolution rules, those that depend on either the local volume

strain or the local deviator invariant, it is demonstrated that — 1 —
the manner in which structure is created depends directly on  Aijki =y deV Ajki (X), Bijii (X) = Ajjia (X) = Aijr ;
the sort of rule that is deployed. 3)

It turns out that a transparent picture of the two-point
correlation function of the stiffness is achieved by using its 1
Fourier transform, the harmonic density. At the same time A=y, J dv
the wave vector that is involved in this representation gives a v

measure of when the internal state of the material is such th%/h this d i f the stiff t d the d
the finite dimension of the constituents becomes relevant. Iyf' ‘o' (S decomposition of the stifiness tensor and the de-

line with other theories the constituents themselves are bgprma}tlon IS subs'utuFed into the equilibrium e_quatlons an
lieved to be much stiffer than the assembly of which they ar prdering on the basis of products of fluctuating terms is
elements, the main cause of deformation being the relativ und:

motion between th rticl ither liding or in-

.oto between the particles due either to sliding or to sp 3Bija () — | %%, v,
ning. (et an) + Ajju

L?Uk

&vk _(?Uk
o7_x|(x)’ (7_X|(X)_(7_X|(X)_akl' 4)

oX;

— 4
j (9X| &X] anan

Il. THEORETICAL PRINCIPLES 4

(9vk (91)|
5X| &Xk

Bijii (X) =—2(fp);.

A medium is characterized by its position-dependent stiff- X
nessA(x), connecting a stress incremesfx) to a strain in-

cremente(x) in geometrical linearization, implying that the
displacement increment is much smaller than the length

scale of a mesodoma(30] D:

A solution hierachy was put forward by Kmer[31]: Neglect
first the last term and solve the ensuing linear equation; then
substitute back and solve for the first-order fluctuations and
so on. Here the first-order fluctuations are retained only and
the solution is expressed as a Fourier transform gimen-

1 J J .
Sij (%) = Aiji (X) €y (X) = EAijkI(X)(&iX:("‘ &—)L:L) (1)  sions p=2.3)

1 - _
The stiffness is defined over the length scBlethe typical Bijii (X) = Znn J dnk Bjji (k)e'mm,
dimension of a small assembly, in such a way that it portrays
the average motion between the grains that constitute the 1 R ,
material. The representation of the medium is here as "point vi(X) = 2m)n f dnk Dy (k)ekmm, (6)
functions”; the alternative representation as "set functions”
is developed by Axelraf30], Sec. 3.5. In this reference also Th,s
relevant probability space measures are discussed. On the
scale of the mesodomain the stress cannot be expected _toikjéijk|(ak|+a|k)+2(fo)i—A_ijk|(kjk|l7k+ Kikid)~0.
represent the force between the grains in its entirety. There is 7)
a correction, not necessarily small, that describes the erratic
part of the force that is left after the local homogenizationThis equation is valid for each value kf the analysis below
that yields the small-scale stress measure; this part of this particularly aimed at investigating the range of sniall
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whereas the harmonic contentf@‘ is nonzero in the range 1he connection with the correlation function is given by the

|k|D>1. For the moment this term is then neglected, but thdamiliar Wiener-Khinchin theorem
issue will be taken up again in Sec. IV.

. I~ — - T L1 1
__The symmetry in thg .|nd|ces of bottA and B f dr <D(T)e"k7=fFT(—k)FT(k)= fF-’F(k)FT(k)-
(Aiji =Ajiki =Aijik » and similarly forB) ensures that one 0
may write (16)
- A ken Cross correlations may be defined analogously. The cross
1K;Bijia g~ Ajjiakjkivi=0. ®  Correlation function is
The acoustic tensor is defined as -
A~ — d, (7)=lim f dt x(t)y(t+17) a7
Pik=Ajjki Kjki 9 Y T J0
and therefore and the cross harmonic density is
v :“S_lk'éb'ldam . (10) *® ) 2
T So(k)=2 J d7 @ (n)e* == (Fp) (K (Fp)j (k).
From this first-order approximation the following relevant o (18)
parameters can be derived. The Fourier transform of the fluc-
tuation of the distortion is This has the propertg, (k) = S,(k) = Sy(—K).

- ST R o e Using these formulas, extendedrtalimensions, to evalu-
ikeva=—PapkijkeBojki@i=—HacoBojan - (1D ge formula(13), it is seen that the first-order correction on

The homogenized stress increment is the stress is a filtered cross harmonic density

v

— Oy ~ ~ ~ ~
— 1 vy — f drk Bogad — K)[Hacpi(K) + Heapi(K) 1Bpin (k)
Spa= Apaki?ki T 5y LdV qukl(x)<(9—xl(x)+ (9_xk(x) 2v(2m)" J T Thas ach] cab] PIkl

(12 ay

= n J dok S B ac(k)
The second term is conveniently reevaluated by making use 4(2m) i
of the development X[ﬁacbj(k)"_ﬁcabj(k)]- (19)

Kroner[31] does the same calculation but expresses the cor-
rection in terms of the cross correlation function. He also
discusses higher-order terms and applies these to a perfectly

1 Jdv B aUk
vy qu|(X)(9—X|(X)

_ J dvf q kf 4.7 B (k) random material. In this way he achieves an estimate for the
v(em® |y n n7 Epakl effective stiffness of the medium, an estimate somewhere
i A between the Reyss ano! Voigh_t estimates. While the estimate
X eftmimTHImim v () of the overall stiffness is not irrelevant for the purposes of
1 A this paper, the central question here is the evolution of the
= f d.k qukl(k)f dy7 im0 (7) 8y(ptK) internal structure of the medium. It is therefore required that
V(2m) evolution rules are phrased. The criterion for these is that

1 R R R they must be sufficiently simple for the theory to retain its
=~V J dnk Bpgad —K)Hachj(K)Bpjki(k) a - 323Igrtlcal form. The effect of the evolution rules is studied
persistent strain paths.
(13) The study is most straightforwardly carried out if the me-
dium is composed of a material with few parameters. The
This expression is now interpreted with the aid of a harmonigimplest, nontrivial material is an isotropic medium that has
density rather thafas does Kroer[31]) express it as a cor- two parameters, for whicA(x) has the form
relation function. The following definitions of correlation
function and harmonic density are used. The autocorrelation Ajjki (X) = N(X) 8ij S+ w(X) (S 0j + 8 8j) . (20)

function ®,(7) of a functiony(t) is . L
The spatial distributions ok(x) and u(x) then completely

1 (T define the first-order stiffness correction given by formula
dy(n)=lim = f dt y(t)y(t+7). (14 (13). The material may consist of isotropic mesodomains and
Toee 0 the overall moduli may exhibit anisotropy due to an aniso-
tropic distribution ofA(x) and u(x). _
For an average isotropic medium the stiffnesfesake
the form

It follows that ®(—7)=®(7). A truncated Fourier trans-
form is defined aﬂZT:fgdt y(t)e~ 'k using this the har-
monic density ofy(t) is now defined as

Aijki =N8jj S+ (8 51 + 83 Skj) - (21)

2
_ *
S(k)= TFT(k)FT(k)' (15) It is easily verified that the following relations hold:
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Pi= (A ) kiKi+ K28, , 22 . 1
Nl Cow 22 N(x)dt=c{Veqs(x)+ch) \ 5 en(Xeha(x), (26
- — (A kok 1)
( /-L) akpb ab kjkc- (23) -
() 3t=c{Mega(x) + B \ S (X epa(X).  (27)

B O 20Kt k2
Bijit (X) = 1(X) 8 S+ p(X) (848 + 81 8)  (24) The coefficientsc{’y*) can be functions of local state vari-
ables: components of the local stress, invariants of the local
and so stress, the mass density, or even independent variables that
change with the local straifiocal contact point distribution,
. kaKc for examplg. None of these are considered here; the
VO 2K material-dependent coefficient§* will be assumed to be
# constants throughout the persistent strain path. The effect of
—(7\_+mkakk+ 5akk2(7\_+ 2u) evolution for the material properties as a whole and pattern

— — of microstructure that evolves are studied as the material is
m(N+2p)k

Let the fluctuations be generated by another isotropic tensor

1vaKe=—

—2paygkeky
subjected to a succession of strain increments.
(25
[ll. EXAMPLES OF DIFFERENT CASES

The evolution in the internal parameters is phrased as a OF EVOLUTION RULE

microstrain-dependent “law”. The strain increment at loca-

tion x, e(x), is the average straie plus a fluctuationg(x); Two examples of evolution rule are studied in some de-

the Fourier transform of the latter i8,,= (i/2) (v,k, tail. The two cases are extremes, but demonstrate that the

+0pK,). As isotropy has been imposed, the coefficients thathedium under persistent straining can become highly struc-

appear in the evolution rule can only depend on the locatured and that the type of structure that materializes depends

invariants. These are the isotropic strain incrementgrucially on the type of evolution rule that is deployed.

€.a(X) = @aat Baa(X) and the first nonzero invariant of the

deviatoric strain increment (1/8),(x)e;(x), where the de- A. Isotropic rule

viatoric strain increment is defined as](x)=ean(X)

— (1/n) e (X) 4. The third invariant exists only in the

three-dimensional case an_d may be llntroducedllf reguwed.. 5)\()():Clmeaa(x)chm[aaﬁ Baa(¥)1, (28)
Changes associated with isotropic and deviatoric strain

increments are of key relevance to the geological materials

mentioned in the Intrg’duction. The chang?e dug to the isotro- Sp(X) = C*eaq(X) = Ci* [ aaat Baa(X)]. (29

pic strain increment can be related to the mechanism of local. .. = . i )

contact deletion or contact making. The physical interactiorPiStinguishing averages and fluctuations gives

takes place at contacts; the mechanical contact law may natu- —

For this case{'*)=0. The evolution rule takes the form

rally depend on local conditions, but the number of interac- N=cMNaa,, () =c{™Baa(X); (30
tive points in a small volume is certainly important. Experi-
mental findings as well as modeling have been reported to Su=cMas,, Sp(x)=ci" Baa(X). (31)

bear out these facts. Yanagisal@2] draws together results

from the theoretical study of various regular and randomTime is mesaured as a fraction af;: a;;=aydt. Let the
packings and experiments on glass beads and sand, demantial state be isotropic. A persistent strain path is defined as
strating a systematic connection between the shear modulug,,=m,adt, azs=mzadt with constant coefficientsn.
the coordination number, and the voids ratio. Brotzmeyerrhus a,,= aq(1+m,+ms) st=a,,t. The four differential
and Abouaf 33] similarly show the relation between the ap- equations(30) and (31) have a solution in the Fourier do-
plied pressure, the voids ratio, and the coordination numbesain. The averages satisfy
for a numerical simulation of a ceramic powder compaction
(acknowledging the he@erogeneoqs character of the problem Mt)=\(0)+ cf”ao( 1+my+my)t, (32)
The effects of the deviatoric strain are reported by Cundall
et al. [34], who with a numerical simulation of a densely
packed assembly of disks with elastofrictional interactive
properties show that the local deletion of contacts is accom- . . . )
panied by a local slip and thus a concomitant reduction in th&or the solution of the fluctuating parts of the stiffness field
stiffness parameters. Both the isotropic and deviatoric straif€ quantity B,,(k) is obtained_ from Eq. (25):
increments influence the stress ratio in a mesodomain anfaa(K) = —[ (k) a— 2p(K) akiki /[ (A+2u)(t)].  The
where the contact law has a frictional character the stiffnesgquations for the fluctuating parts of the stiffnesses are seen
coefficients of the mesodomain will be influenced by thesdo represent a linear system of two differential equations. The
two invariants. solution has the form

With these considerations in mind, the following evolu-
tion rules are put forward: p(t)=1(0)+ M (e?™W 7V —1),

w(t)=mm(0)+c™ ag(1+my+myt. (33
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ciw +(my+ 142 fmy)k3 1/(my+1)(2f+1)k% If this theory is
p()=p(0)+ (x) M(e7Wm—1), (34 pushed to the point where ¢ 2)(t) vanishes there will be
problems with diverging integrals when doing the perturba-
where tion calculus. Much more subtle evolution rules are then re-
quired. However, the tendency for the harmonic density to
K2+ myk3+ mgk3 concentrate in certain directions will occur.
k& %o As the exponent depends homogeneouslioandk3 the
directions in which an extreme concentration of harmonic
density may occur after persistent straining is either the ma-
jor or the minor principal strain direction. Reckoning com-

n(w)=— CE)\)Z“aa_ ZCI(#)

(N+20)(1)
n —

()= (A+2u)(0) , pressive strain positive, as is usual in soil mechanics, the
(M +2¢) aaa ranges off andm, for which the polar angle in thk plane
is the extreme concentration direction are as follows
cMB(0) araat+ 26 p(0) (K2+myk2+mgk2) ag /k? [p=arctank,/k)] ¢=0 and¢== are obtained when ei-
T Mgt 26 (K Mok mgkd) arg /K2 ther
(35 (m,+1)(2f+1)>0, f<fm,

For the interpretation below on structure formation it is con-
venient to write the exponential part of the solution in the

form (my+1)(2f+1)<0, f>fmy; (373

(\+2R)(1)

en(k)f(t):[

_p: ( (ciM+2¢1") argat ‘1 P ¢= m/2 and¢= 37/2 are obtained when either

(A+2u)(0) (A+2u)(0) (Mt 1)(2f+1)>0, f>Fm,
with
or
2¢!M (k2 + m,k2 + mgk3
vy 20 (2 1+ MokpH Msks) (My+1)(2f+1)<0, f>fm,. (37b)
: k4(1+my+mg)
P= cM+2¢{# (38

B. Deviatoric rule

The isotropic distribution of the fluctuations of the stiffness  For this case:,(“‘)=0. The evolution rule is nonlinear;

parameters retains its shape in spéaed only changes in Egs.(26) and(27) take the form
magnitude¢ when the deformation is isotropign,=1 and

msz=1). But the shape becomes distorted if a deviatoric com- [t ,
ponent is present in the average strain. The latter case is most OM(X)=Cp" "\ 5 €an(X)€na(X), (38)
easily studied in two dimensions, so $e{=0.

The salient features are captured by the parameters 1
f=c{®/c™ andm,. The dependence dnof Eq.(36) is as Su(x)=c > €an(X)epa(X). (39)
a function of the angle in th&-plane only. Therefore, for
strain paths in which ¢+ 2¢{*))(1+mj) act is positive,  The perturbation theory produces results with an accuracy of
that is, when fn,+1)(2f+1)>0, the harmonic density of the order §//,p/ ), or equivalently 8|/|«|. The nonlinear
v will inflate in the direction for which the exponent of Eq. terms of Eqs.(38) and (39) are therefore inaccurate and a
(36) is positive. When the value of\¢+2u)(t) decreases linear approximation is appropriate. As before, a coordinate
with time, or (m,+1)(2f+1)<0, the same will happen for system is chosen in which takes the diagonal form. De-
directions for which the exponent is negative. Expressed in pending on the dimension of the problem, the following is
and m,, the exponent has the form[(m,+1+2f )k  obtained:

1 1
V Eeéb(x)et;a(x)” §[| a1~ az)l + (B~ B SO — az)], n=2. (40a

For n=3 define

N s S S .
y=\ad + ag,+ ajz— apas— e — andss

then



5590 M. A. KOENDERS

1 , Y 1 Bu(api—agp—azy) 1 Bol —ayt2ax— azy) + Ba —ay— axpt2aszy)
5€ap(X)epa(X)~—+ — +—
2 V3 2V3 y 2V3 y

. (40b

These formulas are obviously ill defined for isotropic load-
ing. Averages and fluctuations can be distinguished, leading
to differential equations similar to the case of the isotropic
evolution rule. A two-dimensional specialization is pursuedwi,[h
here to acquire insight into the physical properties of the
solutions for persistent loading. The following four equations

- - Co
p(1)=p(0)+ We”(t‘k)
D

(/-") t
f G(r,w)e ""Kdz, (49
0

are obtained:

— 1
ON= 508)| a1~ ayl,

1 (@)
5c” a1~ azyl, (41)

Spu= >

ov(X)

1 (N)
5% [ B11(X) — BoAX) Isgn a11— az)),

1
op(X)= ECE)M)[,BH(X) —BaAX)Isgna—azy), (42
where

(p—v)(k3—k?)

Bri— Baoo=(a11+ az) vt 2K

— (a1~ ay)

y ,3[4ﬁ<§k§+@<‘1‘+ 6k2K2+ k)]

w(N+2m)k?

(43

Using once more the shorthand;= a(dt, ay=maydt and
assuming that the intial state is isotropic, EGkL) and (42)

have solutions. These are rather more complicated in form

than the equivalent solution for the isotropic evolution rule.
The averages are straightforward:

()= \( 1 )
Mt)=N(0)+ 5Co agl1—mlt, (44

_ _ 1
w(t)=p(0)+ 5 g aol1—mit. (45)

The solution for the fluctuations is found in the following

manner. The evolution equations in the Fourier domain take

the form
ork) 1 ) - .
st = 20 ALK D (k) +A, (K Dp(K)]ags, (46
Sp(k) 1 () - .
5 = 5B TALKD (k) +A, (K Dp(K) Jags, (47)

wheres=sgnfn—1). The solution has the form

»(t)=1(0)+ eﬂ“’k)fte( rkye " Kdr, (49
0

G(7,k)= %c%os[AV( 7K H(0)+A,(7,K)p(0)],
(50

Sn(r.k
on(rk) @Ap(ﬂk)) (50

ot

1 ()
58 aos| Au(7K)+

While the solution for the Fourier transform of the fluctua-
tions is given implicitly, the structure formation is dictated
by the asymptotic behavidr—«. The leading term is obvi-
ously the terme”(“¥) in Egs.(48) and(49) and therefore Eq.
(52) is investigated in the limit of largé. The behavior of
7(t,K) in this limit is read from the structure &, (7,k) and
A,(7,K): Eq. (49). Introducing the ratiay=c$/cy’, it is
found that

onp(r,k) 1
5r ~;0(k), (52
with
o= agki(2g—m—1) . 2a0k?k5(3g+2)
-~ k*2g+1)(m-1) k*(2g+1)
K3(2gm—m—1
agks(29 ) (53

T 2gr D(m—1) -

Angles corresponding to maxima for positigék) represent

a concentration of the harmonic density, as well as angles
corresponding to minima for negativk). While for the
case of the isotropic rule the angle of concentration always
coincided with the coordinate axes, for the case considered
here other angles are also possible, depending on the combi-
nation ofg andm. These angles satisfy

Vvg(m—3)+3m-1

(m—1)(29+1)|

CoOsSp==* 54

¢ 2\Jg+1ym-1 (4
These angles are possible when
-1(m+1

‘ (9—1)( ) (543

while the sign of
S=g%(9m?—14m+9)+4g(m?>—4m+1)+2(m?+1)
(54b)

determines whethe#(k) is positive or negative and the sign
of the second derivative
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S,=[g(m—3)+2m][2—g(3m—1)] (540 whereq(0)=1. Assuming an initial isotropic harmonic den-
sity, expression(55) is expressed in the modified Bessel
indicates a maximum whe8®,<0 or a minimum ifS,>0. functionsly andl4 [35]:
When for any givenm and g these angles become the

directions of concentration of harmonic density, the medium (k)

is dominated by an intrinsic microstructure with preferential 5 J’ dk kTv(k)»* (k)]1(0)
directions according to E@54). This is a typical result of an (kp)(t)=

evolution rule that depends on the local deviatoric strain. Jdk K v(k)v*(k)](0)

Other concentration directions may appear simultaneously

and coincide with one of the coordinate axes. This completes 1
the study of the two extreme cases of evolution rule. |1(§(b—0)|n[Q(t)])

X 1 (EIn[q(t)]nLl .
IV. EFFECTS DUE TO THE FINITE CONSTITUENT SIZE 21 O(E(b_c)ln[q(t)])

The analysis in Sec. Il relies on the fact that a local stiff-
ness can be defined. For a material consisting of finite con- (57)
stituents the local stiffness is derived by characterizing % tollows from the properties of the modified Bessel func-
small assembly of particles. Thus the stiffness is defined ove[%

ons that if the 1 direction is the direction in which the
a length scale of the order of the small assembly §ize harmonic densit ncentrated?) alw incr with
Wave vectors with a magnitude greater tHan' have no armonic density concentrategk;) always increases

meaning for the problem. But there is an effect due to théme. Therefore, there must come a point when contributions

. . . _1 .
residue forcefy, which adds a contribution to the overall close to the sphere ik space with radiu® - become im-

stiffness. This contribution is obtained in a way similar to thePortant. More generally, when structure formation takes
manner in which Eq(13) was found and is equal to place an interaction between effects on the macroscale and

those on a microscale is inevitable. Naturally, if the assump-
tion (" (0)=c™p(0) is not made the result will be simi-

1 -
- WJ’ dok Pyp(k) lar, but it is not so easily expressed in analytical form.
The above is a powerful argument in favor of the study of
><[Sl,qukl,ﬁxI ‘(fD)b(k)+S[.,qu|k,3x|’(fD)b(k)]_ small assemblies under intense straining conditions as well

as an initial and tentative guide to the possible form any

The correlation between the gradientBnandf, manifests ~ correction might have. The fact that the problem has a
itself on the scale oD~ in the wave-vector space. The spherical character implies that any correction terms in the
presence oP, however, damps the influence of the correla-constitutive relations must be of an even powerkinthe
tion as this quantity declines rapidly with increasifg 3|mp_lest one be_lng quadr_atlc. This points toa se_cond-_order
As the harmonic density changes due to persigtenstly gradient correction term in the stress-strain relationship. A
deviatorig loading, the typical dominant wave number also Stress incremerst calculated by conventional means, &),
changes. The order of magnitude of the maximum Wav@S’edS to bez corrected by a term proportional to
number corresponds to a spherekispace with radiu® ~*.  ¢"Smn/Xpd%XqD". In k space this type of term will not be
The whole problem must be constrained to remain withinnhoticed, whilek“D<1, in which case the theory reverts to
this sphere and when the dominant wave number approach&i¢ classical form. The correction term detects when the
the permissible outer region certain measures must be takefagnitude of the wave number approacbes' - _
A suitable measure for the magnitude of a component of Itis reasonable to assume that the correction term is sen-

the dominant wave number is derived from interpreting theSitive to the directions in which the harmonic density con-
harmonic density as a probability density function centrates. Calling the unit vectors of these directidnsvith

a superscript to distinguish between them if there is more

o n than one, and employing a set of geometrical ten§bts a
, J dok kiv(k)v* (k) plausible corrective term may have the form
(k)= j (55) ,
dak ¥(k)v* (k) _9Smn o ) NI P)
1= o ax. (Zp) QML ANPN. (58)

The value changes with time as persistent deviatoric Ioadin% . i ) i
takes place. his needs to be expressed in the displacement field. To

By way of example, the case of the isotropic evolution@void problems with objectivitysee[36]) primary variables
rule is considered. To ensure an analytical result, which i&€ used, that is, the distortion and the spin tensor
desirable for transparency, a special assumption is made to

make the parameté¥ in Eq. (34) independent of the wave s =X (%—k ) (59)
number. This assumption is thaf*)7(0)=c™p(0); then mn= ANkl gy, K
the harmonic density has the form

Xinnki™ Xmnik= 2Amnki - (60)

[(K) 2% (K)J() = [ 7(K) * (K) ](0)q(t) 2+P cos' () +e sif (o),
(56)  The total stress increment is
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02 . stituents of the material are small subassemblies, each con-

2 QMaN{PNP sisting of a handful of grains; these subassemblies them-
selves become anisotropic when contacts concentrate in a

JUy
SJ+S|] lek| kkI IX 8XS

du particular direction. The calculus presented here can be
lekl( —Kui +D22 QifhaNPN amended to allow for such effects, but it is unlikely that this
can be done under a purely analytical scheme; numerical
92 AUy approaches will have to be devised to estimate these phe-
Xm ankl Xy kkI (61) nomena.
X is defined to work on a scale greater tHarand therefore V1. DISCUSSSION AND CONCLUSIONS

the corrective term contains contributions of higher-order
displacement and spin gradients only. The spin is solved The approximation that has been made throughout is that
from the requirement that the total stress increment is symen the basis of the first-order approximation of the strain
metric. field, sufficient information is available to estimate the extent
The form for the correction suggested here may not be thef the local evolution of the material properties. This can
most general or even the most appropriate one, but on thabviously be refined. For persistent strain paths and constant
basis of more specific studi¢27] there is little doubt that it evolution rules it is then found that structure formation and
should contain higher-order gradients and gradients of spimduced anisotropy become manifest, even though the con-
tensors. Alternatively, the corrective term may be viewed astituents themselves are perfectly isotropic; the structure for-
a more precise description of the forces between the particlasation appears as a result of spatial distrubution of stiffness
than is achieved by an “ordinary” stress. The term thenand not necessarily due to intrinsic anisotropy on a mi-
approximates the short-range force resitlyegiving a more  crolevel.

precise description of interconstituent forces. For extreme structure formation it is clear that an exten-
sion of the stress strain theory is required to stop the defor-
V. INDUCED ANISOTROPY mation taking place on the scale of tfrgid) constituents of

the medium. In principle, the inhibition can also be phrased

Persistent deviatoric loading of an initially isotropic in terms of the evolution rules themselves, but whichever
sample will lead to overall anistropic properties, even thougtway is chosen a clear need has been identified for the inves-
the constituents themselves are isotropic. The anisotropy iggation of small assemblies of grains in severe straining.
induced by the deviatoric character of the succession of To compare the results reported here with other works
strain increments as the fluctuation intensity of the paramtwo papers are mentioned: those of Williams and R&je
eters that make up the stiffness are ordered in a specifiand Cundal[38]. These are both numerical papers, thus the
direction ink space. The most accessible parameter, illustramethodology for solving the properties of the heterogeneous
tive of the anisotropy induction, is the difference in the 1111medium is entirely different from the one described above.
and 2222 components of the overall stiffness. Equatid@ Both papers describe the fate of a heterogeneous medium
is evaluated for this purpose: under persistent straining, with evolution rules that are simi-

lar (if not identica) to the deviatoric rule deployed here.

1 Both papers find that coherent structures appear at high de-
42w f Akl Sy 11 81106() = S0 B (K)] viatoric strain, similar to the ones that are predicted by more

~ ~ theoretical means in the present paper, that is, structures at
x[Hacbj(k)+Hcabj(k)] certain preferred angles. While a direct comparison with the
present theory is difficult to carry out, the effect of spatial
_ 1 f dkf dopk cog24) distribution in structures is clearly, though qualitatively, vali-
(M2t (277 dated.
- . A A A more quantitave validation could be carried out if a
X[v(=K)p(k)+v(K)p(=k)+2p(K)p(—K)](1). numerical simulation of an assembly of particles is run and a
(62)  Fourier transform of a local stiffness measure is carried out.
If the interparticle force displacement is given by the tensor
Clearly, while the distribution of the fluctuations is isotropic, K and the center-to-center vector between neighboring
Eq. (62 vanishes, but as the distribution builds up in certaingrains is calledc, then a simple measure for the stiffness
directions, as explained in Sec. lll, the angular integral ofApqrs rfepresenting one particle witN contacts is propor-
Eq. (62) becomes nonvanishing and anisotropy is induced. tional to a symmetrized form aE;_,K{Pc{Vcl" .

The anisotropy so obtained is entirely due to the spatial The cross harmonic density of th|s guantity can be deter-
ordering of the material under the influence of the evolutionmined. Suppose that structure formation takes place on a
rules. Another type of anisotropy may also occur, but it hadinear scale of some ten particles. To evaluate the harmonic
been neglected here. This type is inherent anisotropy, whichontent with an accuracy of, say, 10%, 100 adjacent spatial
may become manifest as the constituents themselves aquiiequency points need to be averagadsuming that the har-
anistropy due to changing local state variables. For examplenonic content does not change markedly in the vicinity of
if the material consists of an assembly of grains with anthe point; sed39]), requiring a linear dimension of some
elastofrictional interaction contacts are lost and broken whileL000 particles. For a three-dimensional simulation sonfe 10
the material is strained through a deviatoric path. The conparticles are needed and for a two-dimensional one some-
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thing on the order of 1Dparticles are needed. These num-Rege[37] contain maximally 2000 particles in two dimen-
bers are in line with experiments on laboratory-preparedsions and while a structure formation of some sort is ob-
samples of soil; Arthuf40] has shown in an experiment served, it is difficult to make conclusive statistical statements
using an x-ray grain displacement measurement techniquabout it. The two-dimensional sample size that is needed is
[41] that reproducibility in the standard deviation of the dis- just within the reach of current simulation practice.
placement is achieved for samples consisting of sonfe 10
particles. This number is stress-ratio dependent though; the
number quoted pertains to a value of two-thirds of the stress
ratio at failure(dense sample of Leighton-Buzzard sarebr
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